Present and Future Computing Requirements for Computational Prediction of Protein-DNA Binding

Mohammed AlQuraishi

Stanford University, Harvard University

NERSC BER Requirements for 2017 September 11-12, 2012 Rockville, MD

1. Project Description

Harley McAdams, Stanford University

- Computational prediction of biomolecular interactions
 - Given atomic structures of molecules, predict binding affinity

1. Project Description

Harley McAdams, Stanford University

- Computational prediction of biomolecular interactions
 - Given atomic structures of molecules, predict binding affinity

Input

Output

Protein Structure

Position Weight Matrix

1. Project Description

Harley McAdams, Stanford University

- Computational prediction of biomolecular interactions
 - Given atomic structures of molecules, predict binding affinity
- Present focus
 - Protein-DNA binding (bacterial families)
 - Limited binding modalities
- By 2017:
 - Protein-DNA binding (all families)
 - Protein-protein binding
 - Very diverse binding modalities

2. Computational Strategies

2. Computational Strategies

- Three high-level computational challenges
 - Inference of energy potential
 - Computation of binding energy
 - Identification of putative binding sites (future)
- Code is a mix of off-the-shelf and custom-built:
 - Standard solvers for convex optimization
 - Custom-built for Monte Carlo
 - Mathematica, Matlab, R for analysis
- Main algorithms
 - Convex optimization
 - Monte Carlo runs
 - Geometric algorithms

2. Computational Strategies

- Biggest computational challenges
 - Large memory requirements (convex optimization)
 - Long sequential runs (Monte Carlo)
- Parallel scaling limitations
 - Most computations scale (MPI), except:
 - Monte Carlo runs, depends on how well ergodicity is satisfied
- We do not expect computational approach to change significantly by 2017, except for possible use of GPUs.

3. Current HPC Usage

- Hours used in 2012 (list different facilities):
 - Carver ~0.5M Hrs
- Typical parallel concurrency and run time, number of runs per year:
 - 384-512 cores / run, several hundred runs per year
- Data read/written per run:
 - ~50GB
- Memory used per (node | core | globally)
 - ~2GB/core for Monte Carlo, ~200GB/node for convex optimization
- Necessary software, services or infrastructure
 - Mathematica, Matlab, R
 - Built-in checkpointing would be great

4. HPC Requirements for 2017

Yearly Growth of Total Structures

number of structures can be viewed by hovering mouse over the bar

4. HPC Requirements for 2017

- Compute hours needed (in units of Hopper hours)
 - 5M hrs 10 M hrs, based on expected increase in available data
- Changes to parallel concurrency, run time, number of runs per year
 - Number of independent runs will increase
- Changes to data read/written
 - Increase by 2-3X
- Changes to memory needed
 - Per node
 - Monte Carlo runs will be largely unchanged
 - Convex optimization may require >1TB memory per node
 - Globally
 - Monte Carlo runs will require ~2-3X memory

5. Strategies for New Architectures

- Our strategy for running on new many-core architectures (GPUs or MIC) is:
 - Standard solvers should get updated automatically
 - For custom-code, still in exploration stage.

5. Summary

- With enough computing power...
 - Aim to solve molecular recognition problem
 - Applications in
 - Understanding / simulating biological pathways
 - Protein engineering
 - Reengineering of metabolic networks

